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Abstract
Maximum likelihood estimation of parameters involving mixture model is known 
to have significant and specific patterns of errors. Population pharmacokinetic 
(PopPK) modeling using NONMEM is no exception. A few relevant studies on 
estimation and classification performance were done, but a comprehensive study 
was not yet available. The current study aims to evaluate performance and likeli-
hood ratio test (LRT)-based true covariate detection rate when fitting a bimodal 
mixture of drug clearance (CL) in NONMEM. A large number of PopPK data-
sets with various settings were simulated and then estimated. The estimates were 
compared to the simulated values and summarized. The separation between the 
CL distributions of the two subpopulations is systematically overestimated. The 
major factor associated with the performance is the change in the minimum 
objective function value after removing the mixture component (dOFV). Other 
significant factors include estimated disparity index (DI), estimated mixing pro-
portion, and number of subjects in the dataset. Small dOFV and large estimated 
DI are associated with the worst performance. Omitting a true mixture resulted in 
reduced true covariate detection rates. It is recommended that on top of routinely 
generated standard errors and model diagnostics, dOFV, and other factors when 
necessary, should be taken into account for the evaluation of performance when 
fitting mixture model using NONMEM. In addition, when fitting mixture model 
for CL is intended, the mixture component should be introduced prior to LRT-
based covariate model development for CL.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Estimation of a bimodal drug clearance (CL) distribution with mixture model in 
NONMEM using likelihood maximization algorithms is subject to biases related 
to the disparity.
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INTRODUCTION

The mixture model functionality was first available in 
NONMEM IV, released in 1992.1 On top of the routinely 
assumed continuous Gaussian distributions of random ef-
fects in between-subject variability model, mixture model 
assumes that the population consists of two or more sub-
populations, each having its own model.2,3 The prevalence 
of reports of population pharmacokinetic (PK)/pharma-
codynamic models with a mixture component estimated 
using NONMEM has increased over the past 2  decades. 
Mixture model is most commonly (28%) used to describe 
multimodal distributions of drug clearance (CL).4–33 A 
summary of these reports is available in Supplementary 
File S1.

Unfortunately, maximum likelihood estimation (MLE) 
of mixture model is known to have systematic patterns in 
estimation errors. Lourens et al. explained that the esti-
mation errors are particularly concerning when the dis-
parity between two distributions in a normal mixture is 
small (which is mainly driven by both small differences in 
means and large variances of the two distributions), where 
the disparity is more often overestimated than underesti-
mated.34 This issue with disparity is relevant to the estima-
tion of multimodal distributions of PK parameters, hence 
corresponding population PK (PopPK) parameters defin-
ing such distributions. The estimation errors of individual 
PK parameters and individual classifications are also in 
doubt because they are conditioned on the estimated pop-
ulation parameters. Because the estimated PK parameters 
are essential determinants of dosage regimens, such pat-
terns could compromise clinical dose decisions.

A few studies had done investigations related to mix-
ture model in NONMEM.35–38 Among them, Carlsson 
et al., Kaila et al., and Yoon et al. focused on PopPK data 
and multimodal distributions of CL.35,37,38 However, 
these three studies separately looked into individual 
parameter estimates, individual classifications, and es-
timates for typical values of CL, respectively, under dif-
ferent study settings. Besides, they did not explore the 
estimation errors of non-CL-related parameters. More 
importantly, they fixed several factors that could influ-
ence estimation and classification errors. (Note that the 
word “factors” is used throughout this text to refer to 
all parameters and statistics that may associate with 
such errors.) In particular, all of them fixed the sam-
pling schedule plus one or more of the followings: vari-
ances of parameters, the dominating subpopulation, 
the mixing proportion, number of subjects, and true 
values of non-CL-related parameters. The implication 
of fixing some of these population parameters remains 
unknown.

Additionally, no study has described the pattern of 
estimation errors when both mixture model and covari-
ate effect are involved. Whether omitting a true mixture 
component would affect the rate of true covariate detec-
tion based on likelihood ratio test (LRT; the standard test 
for covariate model development in PopPK modeling) re-
mains an open question.

This simulation study aims at narrowing the research 
gaps stipulated above by conducting more comprehensive 
and integrated investigations into the influences of vari-
ous factors on the estimation of all parameters of interest. 
The following are the objectives of the study:

WHAT QUESTION DID THIS STUDY ADDRESS?
The factors most associated with the estimation performance of parameter esti-
mates, classification performance, and true covariate detection rates were identi-
fied and quantified.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The change in objective function value after removing the mixture component 
(dOFV) is the major factor associated with estimation performance of CL-related 
parameters and classification performance. Other significant factors include esti-
mated disparity index (DI), mixing proportion, etc. The performance is worsened 
when dOFV is small and estimated DI is large. These associations are quantified. 
Omitting a true mixture is associated with reduced likelihood ratio test-based 
true covariate detection rates.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
dOFV, and other factors when necessary, should be taken into consideration 
when fitting and reporting population pharmacokinetic models with a mixture 
component. Mixture model should be evaluated for implementation before co-
variate model development where applicable.
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1.	 To simulate a large set of PopPK datasets without 
covariate effect and another set with covariate effect, 
using various parameter settings, assuming bimodal 
distributions of CL, and then perform estimation on 
the simulated datasets to generate the study databases.

2.	 To evaluate the performance of estimation and classi-
fication against various factors, including the disparity 
measures (namely dOFV, the change in objective func-
tion value [OFV] after removing the mixture compo-
nent, and disparity index [DI], both elaborated later in 
the Methods section).

3.	 To compare the LRT-based true covariate detection 
rates with versus without the mixture component.

METHODS

Definitions – Pharmacokinetic parameters 
and symbols

The following PK parameters are defined: CL, volume of 
distribution (Vd), and absorption rate constant (ka). The 
following modifications apply to these PK parameters: 

•	 (population parameters) TV is the prefix for “typical 
value of,” (i.e., TVCL, TVVd, and TVka);

•	 (population parameters) CV is the prefix for “coefficient 
of variance of” (i.e., CVCL, CVVd, and CVka [defined as 
√

e�2 − 1 × 100%, where ω2 stands for the variance of 
the random effects of the respective PK parameters]); 
and

•	 (individual parameters) caret (^) is the accent represent-
ing individual value (i.e., ĈL, V̂d, and k̂a).

σ is the population parameter quantifying residual un-
explained variability (RUV), θCOV,CL is the population pa-
rameter quantifying the covariate effect size, and γ is the 
skewness of the distribution of individual covariate val-
ues (defined as μ3/μ2

3/2, where μ2 and μ3 are the second 
and third central moments of the normal distribution, 
respectively).

By introducing a bimodal mixture for CL, extra param-
eters apart from the above are needed. The mixing propor-
tion (MIXP; a population parameter) and the individual 
probability (Pmix; an individual parameter) stands for the 
probability for a random subject and the probability for a 
specific subject with previous observation(s), respectively, 
of belonging to subpopulation 1 or 2 (as indicated by the 
subscript, i.e., MIXP1 vs. MIXP2 and Pmix,1 vs. Pmix,2). Note 
that MIXP1  +  MIXP2  =  Pmix,1  +  Pmix,2  =  100%. In addi-
tion, an extra degree of freedom is needed to differentiate 
the TVCLs of the two subpopulations. For this purpose, 
the symbols TVCL1 and TVCL2 are defined such that 

TVCL1 ≤ TVCL2. In addition, rCL represents the ratio of 
TVCL2/TVCL1 (i.e., rCL ≥1). CVCL is assumed to be iden-
tical for the two subpopulations.

Besides, in this text, the term CL-related population 
parameters comprises TVCL1, TVCL2, CVCL, and MIXP1, 
whereas the term CL-related parameters comprises the 
above plus ĈL and Pmix,1. The corresponding comple-
mentary sets, referred to as non-CL-related (population) 
parameters, consist of other (population) parameters de-
fined in the previous paragraphs in this section that are 
being estimated.

Definitions – Terminology and symbols for 
estimation errors

In this text, the term estimation error refers to the differ-
ence of the estimated value from the true value. As widely 
understood, estimation error consists of two components, 
namely (1) bias, the systematic component, and (2) un-
certainty, the random component.39 In this text, bias is 
defined as the median of the estimation errors, denoted 
as errrel,mdn and errabs,mdn for relative and absolute errors, 
respectively. Meanwhile, uncertainty is represented by 
the (1−x%

2

th
 percentile, 1+x%

2

th
 percentile) of the estimation 

errors, denoted as errrel,x% and errabs,x% for relative and ab-
solute errors, respectively.

Definitions – Terminology and 
abbreviations for performance

In this text, the term estimation performance (EP) ap-
plies to all parameters to be estimated on the continuous 
scale. Good EP is indicated by the lack of biases and small 
uncertainty.

Each simulated subject is also classified to the sub-
population with higher Pmix. (For e.g., subpopulation 1 if 
Pmix,1 > Pmix,2.) Based on the true and classified subpopu-
lations of the subjects, the positive predictive values (PPV1 
and PPV2), true positive rates (TPR1 and TPR2), and over-
all accuracy of correct subject classification (%CC) were 
summarized for each dataset. The term classification per-
formance (CP) applies to these summary values. Good CP 
is indicated by these values being close to 100%. The term 
performance, when used alone, refers to the collection of 
EP and CP.

Elaboration on disparity measure – dOFV

dOFV is defined as the change in OFV after removing 
the mixture component. When the true disparity is large 
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(or small), introducing the mixture component often 
significantly improves (or does not much improve) the 
goodness-of-fit, resulting in a larger (or smaller) dOFV. 
Therefore, dOFV can be regarded as a measure of the 
disparity of the bimodal CL distributions, especially 
for the true distribution. This is further illustrated in 
Figure 1.

Elaboration on disparity measure – DI

Lourens et al. mentioned the superiority of the overlap-
ping coefficient (OVL) reported by Inman et al. over 
other statistics (see the separation index by Hosmer and 
the index D defined by Nityasuddhi et al.) in associating 
with EP of bimodal normal mixtures, where OVL refers 
to the overlapping area of the probability density plots 
of the two subpopulations.34,40–43 Lourens et al. defined 
DI as the complement of OVL (i.e., DI  =1  –  OVL) as a 
measure of disparity.34 DI is also applied in this study but 
with important modifications. Specifically, Lourens et al. 

assumed MIXP1 = 50% but cases where MIXP1 ≠ 50% are 
also considered in the definition of DI in this study; be-
sides, Lourens et al. assumed the normal distribution, but 
this study uses the log-normal distribution, which better 
resembles the distribution of CL. Details of the definition 
and approximation procedure of DI in this study are pre-
sented in Supplementary File S2.

DI is dependent on the CL-related population param-
eters because these parameters characterize the prob-
ability density functions of CL. True DI and estimated 
DI, representing the true disparity and estimated dis-
parity, refer to the DI computed based on the true and 
estimated values of CL-related population parameters, 
respectively. Therefore, theoretically, if estimated DI is 
significantly different from true DI, some forms of sig-
nificant errors exist in the estimates for CL-related pop-
ulation parameters. As such, whereas DI is considered a 
measure of disparity, the discrepancies between true and 
estimated DI also reflect estimation errors. To facilitate 
understanding, DI is illustrated in shaded areas in light 
green in Figure 1.

F I G U R E  1   Elaboration of dOFV and DI. A dataset was taken from the study database to exemplify the probability distribution of CL for 
each of small disparity (left) and large disparity (right). In each graph, the two dashed green lines represent the MIXP-weighted probability 
density curves of the true (simulated) CL distributions of subpopulations 1 (left) and 2 (right). The areas under these lines are shaded in 
deep green and light green, which represent the overlapping area and distinct area (which defines the disparity index [DI]), respectively. It 
is visually intuitive that DI is positively related to the disparity of the two CL distributions. The solid green line represents the superimposed 
density of the two dashed green lines. The blue line represents the superimposed probability density of the CL distributions estimated with 
the mixture component, whereas the red line represents one estimated without the mixture component. Each of the grey arrows represents 
the change in a subject’s estimated CL (along the x-axis) and the corresponding likelihood (along the y-axis) when the mixture component 
is removed (thus always pointing from the blue line to the red line). See Supplementary File S5, Part III for further explanation. CL, drug 
clearance; dOFV, change in the objective function value; MIXP, mixing proportion
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Databases generation – PopPK model

For all datasets, a one-compartment structural model with 
first-order absorption and elimination was used to simu-
late all datasets. All PK parameters were assumed to be log-
normally distributed. A bimodal mixture was assumed for 
CL. A proportional error model was used to describe RUV. 
For datasets with covariate effect, covariate effects were 
modeled with the commonly used exponential model.

Databases generation – Parameter 
sampling and simulation design

Each dataset was simulated based on a randomly sampled 
set of the following eight parameters: number of subjects 
(N), TVCL1, rCL, CVCL, MIXP1, TVVd, TVka, and σ, plus two 
other parameters: (1) CVVd and CVka for datasets without 
covariate effect or (2) θCOV,CL and γ for datasets with covari-
ate effect. For each of these 10 parameters, a range of val-
ues was decided. Each range was further divided into three 
strata. All combinations of these strata were sampled, thus 
resulting in 310 = 59,049 combinations. For each combina-
tion, three datasets without covariate effect and one data-
set with covariate effect were simulated. For each dataset, 
each virtual subject was administered a single oral dose of 
500 units, followed by 12 samples for drug concentration.

Databases generation – 
Parameter estimation

Each simulated dataset was then subjected to parameter 
estimation twice: the first time assuming the true model 
structure (denoted Mix) and the second time with the 
mixture component removed (denoted NoMix). Datasets 
with covariate effect were subject to parameter estima-
tion for another two times: similar to Mix and NoMix but 
assuming no covariate effect (denoted as MixNoCov and 
NoMixNoCov, respectively).

Databases generation – Collection of 
results for analyses

For datasets without covariate effect, all results were sum-
marized in two spreadsheets: (1) for population-level data, 
where each row represents a dataset, and (2) for individual-
level data, where each row represents an individual from a 
dataset; the spreadsheets are collectively referred to as the 
database without covariate effect. The same applied to the 
database with covariate effect. These spreadsheets contain 
all data being analyzed later.

Databases generation – Process 
automation and software packages used

The generation of the databases was performed with SUSE 
Linux Enterprise Server 11. All processes were wrapped by 
R (version 3.4.3), through which Perl-speaks-NONMEM 
was configured and called to execute NONMEM 7.4 (Icon 
plc).2,44,45 First-order conditional estimation with interac-
tion, which is an MLE algorithm, was used for parame-
ter estimation. Deployed R packages included data.table 
(version 1.11.4), magrittr (version 1.5), and readr (version 
1.1.1).46-48 Figure  2 shows the R-based workflow for the 
generation of the databases.

Databases generation – Further details

Due to space limitation, many details regarding database 
generation and the ready-to-run R source codes used 
to generate the databases are put in Supplementary File 
S3. Note that the choices of the PopPK model, parameter 
space, and estimation algorithm were based on their re-
spective prevalences in the literature (c.f. Supplementary 
File S1, Table S1.2) such that it is more likely for future 
PopPK studies to find similar datasets in our study for 
reference.

Data analyses – Datasets censoring

Only datasets whose estimation processes terminated 
with successful minimization and covariance step with-
out any error message for both Mix and NoMix (plus 
MixNoCov and NoMixNoCov for analyses of covariate 
detection) were included in subsequent analyses. This is 
because parameter estimates tend to be erratic and unreli-
able otherwise.

Data analyses – Performance

Performance was first assessed graphically without strat-
ification. Then, the analyses were repeated with single-
factor stratification against N, all estimated population 
parameters, θCOV,CL/rCL (which represents the covariate 
effect sizes relative to the subpopulation effect), dOFV, 
dOFV/N, estimated DI, γ, the individual change in OFV 
when the mixture component is removed (dÔFV ), the 
difference between subpopulation-based individual 
OFVs (dÔFVgrp), etc. To further investigate the effects 
of interactions among factors, multiple-factor stratified 
analyses were done against the significant single factors 
identified.
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Data analyses – LRT-based true covariate 
detection rates

For each dataset with covariate effect, the changes in OFV 
after removing the covariate effect (ΔOFV; which should 
be distinguished from dOFV) when fitting with versus 
without the mixture component (ΔOFVMix vs. ΔOFVNoMix, 
respectively) were computed. LRT was then conducted 
at α  =  0.05 and 0.001 under the assumption that ΔOFV 
approximates the χ2-distribution with df  =  1. The LRT-
based true covariate detection rate based on ΔOFVMix and 
that based on ΔOFVNoMix without stratification were com-
puted. This was then repeated with simultaneous stratifi-
cation by N and ln(θCOV,CL). The detection rates based on 
ΔOFVMix versus ΔOFVNoMix were then compared.

RESULTS

Database generation and dataset 
demographics

A database without covariate effect and another one 
with covariate effect consisting of 177,147 and 59,049 
datasets (18,316,469 and 6,097,251 virtual subjects) were 
generated, where 73% and 42% of datasets were quali-
fied for subsequent analyses, respectively. The gener-
ated databases are available in Supplementary File S4. 

Estimated DI and dOFV are positively correlated as 
expected, but the variability in estimated DI is much 
larger when dOFV is small. See Supplementary File S5, 
Tables S5.1–2 and Figures S5.1–8 for detailed database 
demographics.

Unstratified analyses

Figure 3 and Supplementary File S5, Figure S5.9 show the 
results of unstratified analyses for the databases without 
and with covariate effect, respectively. Both databases dis-
play very similar results.

Biases are mostly mild for most parameters. However, 
there is a general trend to overestimate disparity (see 
Figure 3 and Figure S5.9, top-right graph). Despite mild 
biases for each CL-related population parameter, DI is 
systematically overestimated, where errabs,mdn can be as 
severe as +80% as true DI approaches 0%. CVCL is in-
creasingly systematically underestimated as true CVCL 
increases. At true CVCL greater than 45%, overall errrel,mdn 
is at −12%. The apparent biases of individual PK parame-
ters at extreme values are explained in Supplementary File 
S5, section 5A.

Regarding uncertainty, the uncertainty of MIXP1 is very 
severe, such that the errabs,99% often cover 80% to nearly 
100% of the whole range. Non-CL-related parameters gen-
erally have smaller uncertainty.

F I G U R E  2   R-based workflow for the 
generation of the databases. The purple 
boxes represent settings that need to be 
specified before execution. The stacked 
blue boxes represent intermediate outputs 
for all datasets. The red boxes represent 
Perl-speaks-NONMEM and NONMEM 
processes. The green box represents the 
formation of the study databases
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F I G U R E  3   Unstratified analyses of estimation and classification performance for the database without covariate effect. This composite 
figure consists of four sections as indicated. There are three types of graphs in the figure (types I, II, and III). In each type I graph, the 
estimated values are plotted against the binned true values, where the dashed grey line is the line of identity, the solid black line is the 
median of estimates, and the shaded areas in blue, green, and red enclose the ranges of 5th–95th, 2.5th–97.5th, and 0.5th–99.5th percentiles 
of the estimates, respectively. The only type II graph is for Pmix,1. It has the observed Pmix,1 plotted against the binned estimated Pmix,1, where 
the dashed line represents the line of identity. Each type III graph is a cumulative polygon. The x-axes are arranged in decreasing order such 
that the area under the curve is positively related to classification performance. (See also Supplementary File S5, Part III.) CL, clearance; CV, 
prefix for “coefficient of variance of”; DI, disparity index; ka, absorption rate constant; MIXP1, mixing proportion for subpopulation 1; Pmix,1, 
individual probability of belonging to subpopulation 1; PPV1 and PPV2, positive predictive value for subpopulations 1 and 2, respectively; 
TPR1 and TPR2, true positive rate for subpopulations 1 and 2, respectively; TV, prefix for “typical value of”; TVCL1 and TVCL2, typical 
values of CL of subpopulations 1 and 2, respectively; Vd, volume of distribution; σ, population parameter quantifying residual unexplained 
variability; %CC, overall rate of correct classification. Caret (^), accented symbol for “individual value of”
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Pmix,1 shows a systematic trend to be overconfident re-
garding individual classification (i.e., overestimated when 
>50%, and underestimated when <50%), which is consis-
tent with the tendency to overestimate disparity. For indi-
vidual classification, around 80% of datasets can achieve 
≥80% in terms of %CC.

Single-factor stratified analyses

Figure  4 shows the results after single-factor stratifi-
cation by dOFV and estimated DI for TVCL1, TVCL2, 
CVCL, MIXP1, Pmix,1, and %CC for the database without 
covariate effect, whereas other results are available in 
Supplementary File S6. The results are very similar be-
tween both databases.

The most significant factors are found to be dOFV and es-
timated DI. Larger dOFV is associated with significantly bet-
ter performance, especially in terms of reduced uncertainty. 
Notably, despite being highly correlated to dOFV, larger esti-
mated DI is associated with performance differently. For ex-
ample, when estimated DI increases beyond 95%, errrel,95% are 
(−49%, +17%) and (−16%, +36%) for TVCL1 and TVCL2, re-
spectively, showing asymmetry consistent with the observed 
trend of overestimated disparity. Apart from dOFV and esti-
mated DI, the factors MIXP1 and N behave similarly in that 
larger (sub)population sizes are associated with better perfor-
mance, which agrees with basic statistical theory. Meanwhile, 
dOFV and estimated DI associate minimally with EP of non-
CL-related parameters. Regarding the estimation of θCOV,CL, 
larger N and smaller estimated CVCL (but not dOFV/N nor 
estimated DI) display associations with better EP of θCOV,CL.

Multiple-factor stratified analyses

Figure  5 shows the results after multi-factor stratifica-
tion for TVCL1, TVCL2, CVCL, and Pmix,1 for the database 
without covariate effect, whereas other results are avail-
able in Supplementary File S6. Both databases show very 
similar results when simultaneously stratified by dOFV, 
estimated DI, and estimated MIXP1.

The multistratified analysis revealed the key finding of this 
study. Generally, when dOFV becomes smaller and estimated 
DI becomes larger, EP of CL-related parameters and CP are 
worsened in the following patterns: TVCL1 is negatively bi-
ased with negative uncertainty more severe than positive un-
certainty; TVCL2 behaves in the opposite direction of TVCL1; 
CVCL is negatively biased; MIXP1 has very large uncertainty; 
Pmix,1 shows overconfidence; and %CC is generally reduced.

Regarding EP of θCOV,CL, biases of θCOV,CL remain in-
apparent even with multiple-factor stratification (see 
Supplementary File S6, last page). Large estimated CVCL 

and small N are associated with more significant uncer-
tainty of θCOV,CL estimates, which agrees with basic sta-
tistical theory that larger N and smaller variances are 
associated with better estimation accuracy.

Differences between fitting with versus 
without the mixture component regarding 
covariate effect

There were 15,571 datasets in the database with covariate 
effect that were included in subsequent analyses. Without 
stratification, the LRT-based true covariate detection rates 
were calculated to be 92.1% and 89.4% based on ΔOFVMix 
and ΔOFVNoMix, respectively. The stratified rates of LRT-
based true covariate detection with Mix and NoMix are 
summarized in Table 1. (See Supplementary File S7 for the 
distributions of ΔOFVMix and ΔOFVNoMix.) Larger N and 
larger estimated θCOV,CL are associated with higher rates of 
covariate effect detection as expected. The results indicate 
that true covariate detection rates are consistently lower 
when the true mixture is omitted during estimation. By 
stratum, the largest observed absolute difference in the de-
tection rates based on ΔOFVNoMix versus ΔOFVMix is −29.5%. 
Besides, the differences in estimated ln(θCOV,CL) between 
Mix and NoMix have a mean value of −0.006 and a 2.5th–
97.5th percentile range of (−0.118 to +0.091), demonstrat-
ing similar estimated θCOV,CL between Mix and NoMix.

DISCUSSION

Major findings

This study quantified, under the context of PopPK mod-
eling and with the use of the MLE algorithm, the system-
atically overestimated disparity in estimating mixture 
model especially when the true disparity is small. The 
major factor associated with performance of mixture 
model is dOFV, followed by other significant factors, such 
as estimated DI. Datasets with small dOFV and large esti-
mated DI have more significant estimation errors. The as-
sociations between estimated DI versus performance are 
particularly obvious when dOFV is not large (e.g., dOFV 
<30). Meanwhile, the lack of association between dOFV 
and estimated DI versus non-CL-related population pa-
rameters suggests that such phenomenon is likely specific 
to the parameters with a mixture distribution.

The estimation of θCOV,CL and that of mixture model do 
not appear to interact with each other. Besides, omitting 
the true mixture is associated with decreased true covari-
ate detection rates especially when the result of LRT is 
neither extremely significant nor insignificant.
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F I G U R E  4   Stratified analyses for TVCL1, TVCL2, CVCL, MIXP1, Pmix,1, and %CC using dOFV and estimated DI as single factors for the 
database without covariate effect. In each column, the factor and range of stratification are shown at the header row of the figure. From 
the top to the bottom rows are the performance plots for TVCL1, TVCL2, CVCL, MIXP1, Pmix,1, and %CC, respectively. There are three types 
of graphs in the figure (types I, II, and III). In each type I graph, the estimated values are plotted against the binned true values, where the 
dashed grey line is the line of identity, the solid black line is the median of estimates, and the shaded areas in blue, green, and red enclose 
the ranges of 5th–95th, 2.5th–97.5th, and 0.5th–99.5th percentiles of the estimates, respectively. Each type II graph has the observed Pmix,1 
plotted against the binned estimated Pmix,1, where the dashed line represents the line of identity. Each type III graph is a cumulative polygon. 
The x-axes are arranged in decreasing order such that the area under the curve is positively related to %CC. (See also Supplementary File S5, 
Part III.) CVCL, coefficient of variance of drug clearance (CL); DI, disparity index; dOFV, change in objective function value after removing 
the mixture component; MIXP1, mixing proportion for subpopulation 1; n, number of datasets in the stratum; Pmix,1, individual probability 
of belonging to subpopulation 1; TVCL1 and TVCL2, typical values of CL of subpopulations 1 and 2, respectively; %CC, overall rate of correct 
classification
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Study limitations

Out of various model structures, this study has limited the 
exploration of mixture model estimation to a specific PopPK 
model and parameter space chosen based on its relative 
prevalence. For instance, the true model structure in this 

study assumes identical CVCL between the two subpopula-
tions. Although this is not necessarily realistic, we noticed 
that estimating with separate CVCLs is associated with fre-
quent minimization or covariance step failure. In fact, most 
published PopPK models with mixtures of CL distributions 
assumed identical CVCL (see Supplementary File S1, Table 

F I G U R E  5   Stratified analyses for TVCL1, TVCL2, CVCL, and Pmix,1 against dOFV, estimated DI, and estimated MIXP1 simultaneously 
for the database without covariate effect. This composite figure consists of four sections. The top-left, top-right, bottom-left, and bottom-right 
sections show the estimation performance for TVCL1, TVCL2, CVCL, and Pmix,1, respectively. In each section, the stratifications by dOFV 
and estimated DI are represented by the outer y-axis and the outer x-axis, respectively. This results in a total of nine plots. In each plot, the 
x-axis represents estimated MIXP1 (or estimated Pmix,1 for the bottom-right section) and the y-axis represents the relative estimation errors (or 
observed Pmix,1 for the bottom-right section). Except for the bottom-right section, in each plot, the dashed grey line is the line at 0% error, the 
solid black line is the median of relative errors of estimates, and the shaded areas in blue, green, and red enclose the ranges of 5th–95th, 2.5th–
97.5th, and 0.5th–99.5th percentiles of the relative errors, respectively; besides, the inner y-axis is transformed to the scale of log(estimated 
value/true value) such that the visual distance from 0% reflects the fold difference. For the bottom-right section, in each plot, the dashed grey 
line represents the line of identity. (See also Supplementary File S5, Part III.) CVCL, coefficient of variance of drug clearance (CL); DI, disparity 
index; dOFV, change in objective function value after removing the mixture component; MIXP1, mixing proportion for subpopulation 1; Pmix,1, 
individual probability of belonging to subpopulation 1; TVCL1 and TVCL2, typical values of CL of subpopulations 1 and 2, respectively
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S1.2). To maintain the quality of data analyses, the investiga-
tion of separate CVCLs is excluded from the current study.

Besides, a factor that can influence dOFV but is not 
accounted for in this study is the sampling schedule. 
Designing the number of samples and the timings of 
sampling can render numerous situations, thus requiring 
another large-scale study to analyze under the context of 
mixture model. Preliminary analyses also showed that 
sparse data (6 samples or less per subject) lead to frequent 
optimization failure under the current PopPK model. 
Therefore, the sampling schedule was fixed at 12 samples 
per subject in this study. (The mean is an average of 9 sam-
ples per subject for studies listed in Supplementary File S1 
and Table S1.2.)

In addition, one may argue that investigating param-
eter estimates themselves (instead of the true values) or 
their derivatives as factors is not legitimate. However, it 

should be emphasized that true values are unavailable in 
actual studies. To enable assessments of performance, it 
was decided that the estimated values instead of the true 
values are used as factors.

Insights for future PopPK studies based 
on the current results

Although the limited scope of this study implies that 
the reported numbers are only applicable to the specific 
model structure and study design, it is presumable that 
the trend of overestimated disparity extends to other set-
tings in PopPK modeling. Therefore, based on present 
findings, we recommend that dOFV should be considered 
in the evaluation of performance in PopPK mixture model 
fitting, on top of routinely obtained model diagnostics; 

T A B L E  1   Stratified rates of LRT-based true covariate detection with versus without the mixture component

N

Estimated ln(θCOV,CL)

-­∞ to 0.12 0.12~0.20 0.20~0.32 0.32~0.43 0.43 to ∞

LRT-based true covariate detection rates at α = 0.05

200~300 98.2% (0.0%) [503] 100.0% (0.0%) [564] 100.0% (0.0%) [458] 100.0% (0.0%) [580] 100.0% (0.0%) [273]

100~200 90.5% (0.2%) [514] 99.8% (0.2%) [559] 100.0% (0.0%) [538] 100.0% (0.0%) [543] 100.0% (0.0%) [371]

75~100 77.0% (−1.8%) [444] 99.0% (−3.7%) [599] 100.0% (−0.3%) [605] 100.0% (0.0%) [536] 100.0% (0.0%) [481]

50~75 56.0% (−1.5%) [455] 96.5% (−6.8%) [542] 99.5% (−1.4%) [576] 100.0% (−0.2%) [524] 100.0% (0.0%) [619]

35~50 42.0% (−4.4%) [459] 90.0% (−13.3%) [510] 98.5% (−7.3%) [606] 99.8% (−0.7%) [447] 99.9% (0.1%) [669]

20~35 25.0% (−3.8%) [452] 72.7% (−13.5%) [466] 94.7% (−17.2%) [563] 98.3% (−8.3%) [411] 99.9% (−0.6%) [704]

LRT-based true covariate detection rates at α = 0.001

200~300 84.3% (0.2%) [503] 99.8% (−0.4%) [564] 100.0% (−0.2%) [458] 100.0% (0.0%) [580] 100.0% (0.0%) [273]

100~200 62.3% (−4.5%) [514] 93.0% (−7.2%) [559] 99.4% (−2.6%) [538] 100.0% (−0.2%) [543] 100.0% (0.0%) [371]

75~100 40.5% (−7.0%) [444] 75.8% (−16.7%) [599] 97.5% (−11.4%) [605] 100.0% (−1.9%) [536] 100.0% (0.0%) [481]

50~75 25.7% (−6.4%) [455] 60.3% (−17.7%) [542] 91.5% (−16.3%) [576] 99.8% (−4.4%) [524] 100.0% (−0.2%) [619]

35~50 17.0% (−8.3%) [459] 49.8% (−24.9%) [510] 77.2% (−25.9%) [606] 96.2% (−11.6%) [447] 99.7% (−0.6%) [669]

20~35 6.4% (−3.3%) [452] 32.2% (−20.2%) [466] 64.3% (−29.5%) [563] 86.6% (−17.5%) [411] 96.4% (−4.8%) [704]

LRT-based p values

200~300 0.0059 (0.0038) <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001)

100~200 0.0208 (0.0208) <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001)

75~100 0.0658 (0.0671) 0.0044 (0.0106) <0.001 (0.0012) <0.001 (<0.001) <0.001 (<0.001)

50~75 0.1424 (0.1346) 0.0083 (0.0248) 0.0026 (0.0050) <0.001 (<0.001) <0.001 (<0.001)

35~50 0.2038 (0.2044) 0.0215 (0.0517) 0.0047 (0.0178) <0.001 (0.0029) 0.0015 (<0.001)

20~35 0.3321 (0.3215) 0.0473 (0.1073) 0.0100 (0.0544) 0.0031 (0.0166) <0.001 (0.0013)

Note: Datasets are stratified by N and θCOV,CL, with the ranges specified on the leftmost column and the header rows, respectively. Each data cell represents 
a stratum of datasets. The table is divided into the top, middle, and bottom parts. For the top and middle parts, in each cell, the percentage on the left 
represents the proportion of datasets with the true covariate detected based on LRT conducted with the mixture component (at α = 0.05 (top part of table) 
and 0.001 (middle part of table) with df = 1, equivalent to an increase in OFV >3.841 and 10.828 after removing the covariate from the model, respectively); 
the percentage within the brackets represents the difference in the proportion when LRT was conducted without the mixture component, compared to LRT 
conducted with the mixture component (bolded cell if the difference is over 5%); the number within the square brackets represents the number of datasets 
within the stratum. For the bottom part of the table, in each cell, the number on the left is the mean value of LRT-based p values with the mixture component, 
whereas the number within the brackets is that without the mixture component. LRT, likelihood ratio test; N, number of subjects in the dataset; OFV, objective 
function value; α, significance level of the LRT; θCOV,CL, population parameter quantifying the covariate effect size.
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and when dOFV is small, estimated DI and other factors 
can be regarded as auxiliary factors to assist the evalua-
tion. Meanwhile, the database generated from this study 
acts as useful numerical reference regarding performance, 
especially when the model structure and study design are 
similar to this study. (An Excel-based database query in-
terface is available in Supplementary File S8, which also 
features an automated calculator for the approximation 
of estimated DI.) Besides, mixture model should be evalu-
ated for implementation before performing LRT-based 
covariate model development to mitigate the risk of not 
detecting true covariates.

Performance of routinely reported model 
diagnostics

The asymmetric standard errors (SEs) in NONMEM are 
often not good descriptors of uncertainty, especially in 
case of complex models.49 Current results imply that in 
the context of mixture model, SE is unlikely representa-
tive of uncertainty as well. For example, Figure  6 illus-
trates the relative incapability of SEs for TVCL1, TVCL2, 

CVCL, and MIXP1 to capture the sizes and distributions 
of estimation errors when compared to non-CL-related 
population parameters. As such, bootstrapping might be 
more preferrable to inform about uncertainty. The perfor-
mances of these model diagnostics are of interest but out-
side the scope of this study. Further studies in this aspect 
are required.

Clinical relevance

CL is the determinant for drug exposure and thus an essen-
tial reference for dose decisions. Dose decisions based on 
PopPK studies are in demand everywhere, from preclinical 
studies to postmarketing drug use optimization studies and 
therapeutic drug monitoring. The misleading parameter es-
timates obtained from fitting mixture model in NONMEM 
can lead to the decisions of suboptimal or even ineffica-
cious or toxic doses. In fact, the patterns of estimation er-
rors identified in different parameters have their respsective 
relevances to the dose decision process. For instance, the 
biases and asymmetric uncertainty of estimated TVCL1 and 
TVCL2 can lead to suboptimal dose decisions. In addition, 

F I G U R E  6   Distribution plots of normalized residuals of population parameter estimates versus standard errors reported from 
NONMEM. The 10 plots for TVCL1, TVCL2, CVCL, MIXP1, TVVd, CVVd, TVka, CVka, and σ from the database without covariate effect, and 
θCOV,CL from the database with covariate effect are shown in the corresponding plots in the figure, as indicated. For each of these population 
parameters, the normalized residuals are calculated as the standard z-scores of the sampling distribution (defined using the estimated values 
as means and the corresponding standard errors (SEs) or relative SEs (RSEs) as SDs, assuming a normal distribution for logit(MIXP1) and 
ln(θCOV,CL) or a log-normal distribution for other population parameters) at the true values. The normalized residuals are plotted against the 
binned SEs or RSEs, where the dashed grey horizontal lines enclose the central 95% range of a standard normal distribution (i.e., −1.96 to 
1.96), the solid black line is the median of normalized residuals, and the shaded areas in blue, green, and red enclose the ranges of 5th–95th, 
2.5th–97.5th, and 0.5th–99.5th percentiles (i.e., 90%, 95%, and 99% ranges) of the normalized residuals, respectively. Ideally, the green area 
should have sizes and positions that match the area enclosed by the dashed grey horizontal lines. CL, clearance; CV, prefix for “coefficient of 
variance of”; ka, absorption rate constant; MIXP1, mixing proportion for subpopulation 1; TV, prefix for “typical value of”; TVCL1 and TVCL2, 
typical values of CL of the subpopulations 1 and 2, respectively; Vd, volume of distribution; σ, population parameter quantifying residual 
unexplained variability; θCOV,CL, population parameter quantifying the covariate effect size
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negatively biased CVCL can lead to overconfidence in the 
proportion of the target population that can benefit from 
the decided dose. In response, findings in this study can 
help numerically inform the average distributions of esti-
mation errors and hence the optimality of dose decisions.

Meanwhile, omitting true covariates has the conse-
quence of obtaining less accurate estimates of individual 
PK parameters. For this reason, the decision to not imple-
menting mixture model before LRT-based covariate model 
development should be carefully considered.

CONCLUSIONS

The EP of CL-related parameters and CP when fitting bi-
modal distributions of CL in NONMEM is generally worse 
when dOFV is small. When dOFV is small, estimation er-
rors are the most severe when estimated DI is large. Other 
relatively significant factors include estimated MIXP1 and 
N. Modelers are recommended to take at least dOFV, and 
other factors when necessary, into account for the evalua-
tion of performance, on top of results obtained from rou-
tinely done model diagnostics.

The estimation of covariate effect size and the estima-
tion of mixture model do not significantly associate with 
each other. Omitting the mixture component when there 
exists a true mixture distribution would lead to decreased 
rates of LRT-based true covariate detection in covariate 
model development. Therefore, evaluation for implement-
ing mixture model before covariate model development is 
preferable.
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